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Abstract.-It is shown that the expression for the Fourier components of 
the density-density correlation function in a fluid obtained from the linea- 
rized hydrodynamic equations can also be obtained by adopting a particularly 
simple form for the associated memory function. The result is used to cal- 
culate the longitudinal viscosity of a fluid in terms of the moments of the 
space and time Fourier transform of the density-density correlation function 
S(q, w ) .  

1. Introduction 

A function of great importance in the investigation of the dynamics 
of atomic motion in fluids ia the Fourier transform of the density- 
density correlation function, S(q, w ) .  At long wavelengths it can be 
determined by measuring the spectral distribution of light scattered 
by the density fluctuations in a fluid, while for much shorter wave- 
lengths similar information is obtained by inelastic neutron scatter- 
ing experiments. It may be written in terms of the intermediate 
scattering function F(q, t )  by the equation 

where F(q, t )  = (l/N) (pq(t )  p,(O)), the brackets denoting a canonical 
ensemble average, N being the number of atoms in the fluid and 

p,,(t) is the density fluctuation given by pq(t)  = exp ( - iq - rj(t)). A 

calculation of the time-dependent correlation function F(q, t )  must 
necessarily involve a theory of the dynamics of the atoms in the fluid 
and the experimental accessibility of F(q, t )  affords a direct test of 
the theory. 
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238 T. O A S K E L L  

For small values of q and large t ,  F(q,  t )  can be obtained from the 
linearized hydrodynamic equations (see for example Mountain 
1966)(') giving the well-known result 

F(q,  t )  = F(q,  0) { (1  - cu/cp) exp ( - DTq2t) + cu/c9 exp ( r q 2 t )  COS c8qt }  
(1 .2)  

where DT is related to the thermal conductivity IT by 

DT = K/pmCp, r = !d($r] + 5) (pm)-' + ( c p / c v  - l )DT) ,  

r ]  and 5 being the shear and bulk viscosities respectively and C ,  is 
the adiabatic sound velocity. Alternatively from Eq. (1.2) we may 
obtain S(q ,  w )  in the limit of small q and w. As a point of notation 
F(q,  0) will be referred to in its usual way as the structure factor 

In order to discuss the viscosities we introduce the spectral function 
S(q) .  

Z ( w ) ,  defined by 

(1 .3)  

in which p is the number density, m the atomic mass and = ( k ~ T ) - l .  
In  particular it is well-known that the longitudinal viscosity tr] + 5 = 

Z(0) (Kadanoff and Martin 1963).(5) This paper improves and 
clarifies some work briefly reported earlier (Gaskell 1970)(*) to be 
referred to  as I) which obtained a result for Z(0) in terms of the 
momenta of S(q,  w ) ,  Wn given by 

w4 
Z ( w )  = m 2 p / l  lim a S(q, w )  

p-*oq 

A n  unsatisfactory feature of this earlier calculation was that the 
value of F(q,  t )  reduced to the hydrodynamic limit given in (1.2) only 
in the case C,/C,  = 1 .  This' is now corrected so that the hydro- 
dynamic limit is completely obtained and the calculation extended to 
obtain the spectral function Z ( w )  as well as its zero frequency limit. 

The basis of the approach is to describe the time evolution of a 
correlation function in terms of a memory function, M ( t ) ,  which one 
assumes has a simpler structure. It is appropriate to normalize 
the correlation function to have the value unity at t = 0. We shall 
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V I S C O S I T I E S  O F  SIMPLE LIQUIDS 239 

denote the normalized intermediate scattering function (p,(t)p,(O))/ 
(p , (O)p , (O))  by #( t )  and define the memory function M ( t )  through 
the equation 

- +( t )  + d7 M(t -7)4(7) = 0. dt J: 
The memory function in this particular problem is closely related 
fo what has been called the time-dependent direct correlation function 
(Lado 1970).@) 

2. Mathematical Model of the Memory Function 

I n  I, on the basis of an investigation of the concept of a memory 
function by Berne, Boon and Rice (1966),(') the ansatz that the 
memory function decays exponentially at large t was adopted. It 
was assumed that M could be constructed a t  large t from the two 
parameter function M = y(q) exp ( - a(p)  I t I ) .  The memory function 
is shown from the work of Berne, Boon and Rice(') to be an even 
function of time and to have zero derivative at  t = 0, a condition 
which is not satisfied by the above exponential. It is also well-known 
that the coefficients of tn  in a small t expansion of # ( t )  may be 
obtained in terms of the interatomic potential and the equilibrium 
distribution functions, and since these coefficients are related through 
Eq. (1.4) to those of M ( t )  we may choose the parameters in the 
memory function so that the first few coefficients are given exactly 
(the coefficients are essentially the moments mentioned earlier). 
I n  order to do this the assumed form for the memory function was 
modified, to correct the behaviour at small t ,  by the introduction of 
a third parameter ~ ( q )  so that 

(2.1) 

which a t  large t means that M --+ y(q) exp [ - a(q)(t - ~ ( q ) ) ]  suggesting 
that ~ ( q )  has an interpretation as a relaxation time rtssociated with 
the complicated small time behaviour of the fluid. This interpreta- 
tion will be clearer, in the limit q --+ 0, when expressions for the 
viscosities have been derived. The approach may be summarized 
in the following way. An assumption is made about the form of the 
memory function which contains a number of parameters chosen so 

31 = Y ( d  exp [ - a ( d { ( t 2  + ~2( (9 ) ) "2  - M ) l ?  
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240 T. O A S K E L L  

that the known behaviour of +( t )  is correctly given, and our firm 
knowledge of the latter is limited to its hydrodynamic limit and the 
low order moments w”. A similar technique has been applied to the 
transverse part of the currentcurrent correlation function with a 
view to estimating the shear viscosity (Forster, Martin and Yip 
1968)@) but a calculation of the bulk viscosity, which we now 
attempt, has not to our knowledge been carried out. 

It was pointed out earlier that the form of M previously adopted 
and given in Eq. (2.1) led to a result for F(q, t )  which reduced in the 
hydrodynamic limit to Eq. (1.2) with C,/C,  = 1. This arises in the 
following way. When the parameters in (2.1) are chosen in the way 
indicated y(q) = M ( 0 )  = us = q2/m/3S(q) so that at small q, 

- 

Y ( q )  + !?2/m/3S(o) = CT qs) 

where CT is the isothermal sound velocity and a(q) + aqp, a being 
independent of q. In  order to obtain the correlation function, 
Eq. (1.4) is solved by Laplace transform, subject to the boundary 
condition + ( O )  = 1, to give 

&(P) = ( P + & W 1  (2.2) 

p being the Laplace variable and $ ( p )  and &(p)  Laplace transforms. 
Hence to obtain the hydrodynamic limit we calculate the inverse 
Laplace transform of 

&p)  = ( p + ~ 2 ) ) i ( p 2 + ~ z + c T ~ 8 )  (2.3) 

which in the q + 0 limit is given by + ( t )  = exp ( - aq2t/2) cos CTqt. 
This has the same form as (1.2) when C,/C,  = 1 and we can identify 
a as (%q+[) /pm, which is the result obtained in I. To describe 
correctly the hydrodynamic limit we introduce a further parameter 
/3(q) which will be related to the heat diffusion coefficient DT and a 
third one h(q) to be a measure of the difference C,/C,  - 1. 

We shall assume for the memory function the general form 

M ( t )  = A exp ( - 6 I t  1 )  +Bexp ( - - e  I t I), 
though we choose A,  B, c and 6 in the following way. 
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V I S C O S I T I E S  OF SIMPLE L I Q U I D S  241 

and hence 

I t  will be shown that in this case also as q -+ 0, 

2y(q) -+ w2 -t f/mpS(O). 

If, when a(q) and B(q) are determined in terms of the moments, we 
can choose that in the small q limit a(q) -+ aq2, P(q) -+ bq3 and we 
select h(q) = 2y(q) (C,/C, - l),  Eq. (2.7) is identical in form to the 
expression for $ ( p )  derived from the solution of the hydrodynamic 
equations (Mountain 1966).(’) This is 

where C, is the adiabatic sound velocity given by 17,’ = (C,,/C,,)C,z 
and we can identify a = (tv + [ ) /pm and b = DT. The hydrodynamic 
limit (1.2) follows from this. The relaxation time will be introduced 
in a slightly different way to that adopted in I. The exponential 
terms in Eq. (2.4) are modified so that each becomes 

Y ( d  exp r - W ( t B  + T2(q))”21, 

which at large t have the correct form y(q) exp ( - 6(q) I t I) rather than 
y(q) exp (6(q)T(q)) exp ( - 6(q) I t I )  mentioned earlier. The additional 
exponential factor in the latter did not contribute to the hydro- 
dynamic limit in I since in that case 6(q) was proportional to q$ in 
the small q limit. However, in the present situation 6(q) is pro- 
portional to q and there would be additional contributions to 
Eq. (2.7). By the modification given above we ensure the correct 
limit as t -+ 00 though this causes a minor adjustment in the calcula- 
tion of the parameters from the small time expansion. 
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242 T. O A S K E L L  

3. Determination of the Shear and Bulk Viscosities 

I n  the determination of the parameters in the memory function 
we compare the coefficients of tn in an expansion of the approximate 
memory function with the exact values and choose the parameters 
to give correctly the first few moments 0". For a classical fluid the 
coefficients are zero, when n is odd and there is a theorem relating 
the moments to the coefficients (Singwi 1968)(1°) which may be written 

The leading terms in a series expansion of the memory function 
are easily shown to be given by 

M ( t )  = y{exp ( - 67) + exp ( - €7)) 

(6exp ( - 87) - - E  exp ( - - E T ) )  
' - a  + 

{ (a  - /3)2 - 4h)l'Z 

Since the determination of the viscosities is associated with the 
behaviour of the above expression for small values of q we shall 
evaluate the coefficient oft* in the limit q -+ 0. Hence from Eq. (3.2) 

W t )  = Y ( d ( 2  - 27(q)a(q) - T2(dX(P) + O ( @ ) )  
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V I S C O S I T I E S  OF SIMPLE L I Q U I D S  243 

It is interesting that the parameter j?(q) which is associated with the 
heat diffusion coefficient has not appeared to order t 4 ,  which means 
to order t e  in the intermediate scattering function. Using Eq. ( 3 . 1 )  
and the well known expressions for the moments 2 and 3 given by 

i t  follows that if we choose the parameters in the following way that 
the leading terms in a q expansion of the second, fourth and sixth 
moments of S(q,  W )  constructed from this memory function will be 
given exactly. 

Q(Q! + h(q) = q2 3 +- dr g(r)x2 - - S(O)-l mp + O(q4) 7(q)  ( pZBS a2+ a z  >I 
(3 .5 )  

Using the value for h(q) suggested earlier, the parameter m(q) derived 
from these equations has the type of q dependence in the small q 
limit to produce the hydrodynamic behaviour correctly, i.e., 
a(q) -+ q z ,  where the coefficient a is given by 

We can therefore write 87 + 5 = ($J + B - B,)7(0), where 

is the rigidity, 

the (instantaneous) bulk modulus and B, = pkBT (C,/C,) S(O)-l the 
adiabatic bulk modulus. If we infer from this that 7 = G ( 0 )  and 
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244 T. O A S K E L L  

5 = (B  - B,)7(0) we obtain for the ratio of viscosities 51.1 = ( B  - B,) /a .  
This result has been derived in a somewhat different fashion by 
Schofield (1968).(s) Using the Cauchy relation which is valid for a 
fluid with two-body central interactions B = $U + 2(P - p k ~ T ) ,  
where P is the pressure (Zwanzig and Mountain 1965)(") and the 
above ratio becomes 

There is some experimental data available for this ratio in the case 
of argon (Naugle, Lunsford and Singer 1966)(*) and a number of values 
of G and B have been computed for a fluid with a 6-12 interatomic 
potential (Zwanzig and Mountain 1965,(11) Forster, Martin and 
Yip 1968).@) However the conditions of temperature and density 
in the experiments do not correspond very closely with those covered 
by the available calculations and a test of the above equation is not 
entirely satisfactory. Table 1 gives a sample of the results in which 
an estimate of the adiabatic bulk modulus has been made where 
possible from experimental results. Whilst the trend in the observed 
behaviour of the ratio 5/77 is 

TABLE 1 

T O K  Density (gm. cm-a) Observed ( B  - B,)/Q 

142.4 1.068 1.95 
144 1.08 < 1.6 
114.8 1.28 1.11 
128.2 1.25 N 1  
86.3 1.413 0.78 
86.1 1.415 N 0.6 

followed by the ratio ( B - B , ) / G  the latter generally seems to be 
smaller than the ratio of the viscosities. A more satisfactory 
comparison however would be to evaluate B ,  from the computed 
value of the radial distribution function used in the calculation of G 
and B, rather than to obtain it from experiment. 

To determine absolute values for viscosities we need to be able to 
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V I S C O S I T I E S  O F  SIMPLE L I Q U I D S  245 

obtain the relaxation time ~ ( 0 )  and the final equation in (3.5) pro- 
vides the means. I n  order that  the sixth moment of S(q, w )  be given 
exactly, in the small q limit, we must have 

An expression for 2 has been obtained in terms of the equilibrium 
distribution functions (Forster, Martin and Yip 1968),(2) and in 
addition to g(r)  i t  involves the three atom distribution function g3. 
The latter authors also evaluated lim ( 2 / q 4 ) ,  though at the expense 

of replacing gs by its approximate value based on the superposition 
approximation, in order to carry through the numerical integrations. 
Since the superposition approximation is quantitatively notoriously 
unreliable except at very low densities there will therefore be some 
uncertainty about the accuracy of the values of ~ ( 0 ) .  This is unavoid- 
able a t  present in the absence of a better theory of g3, though there 
is the possibility of evaluating the integrals using computer experi- 
ments. I n  view of this and the lack of information about the adia- 
batic compressibility already mentioned, only two values of the 
viscosities are given. One corresponding closely to conditions a t  
the triple point of argon and the other to somewhat different condi- 
tions of temperature and density, to illustrate that the approach is 
yielding sensible results. These are shown in Table 2. 

Q-co 

TABLE 2 

128.2 1.25 1.4 XIO-' 1.6 X IO- '  1.47X10-" 1.15X10-' 1.03x10-' 
86.1 1.415 2.68 x lo-' 2.09 X lo-' 1.68 X lo-'' 1.67 x lo-' 0.98 x 10-1 

The value of the ngitudhal viscosity given by the results in the 
second row of Table 2 is lower than that obtained in I, which wm 
calculated under the same conditions, because here B,  correctly 
replaces BT and exceeds the latter by a factor C,/C, which at the 
triple point is e 2.3. We emphasize that since the numerical results 
are based on the superposition approximation they are not a con- 
vincing test of the method. 
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246 T. OASKELL 

4. The Spectral Function Z ( w )  

tion function, S(q, w ) ,  we make use of the result 
To calculate the Fourier transform of the density-density correla- 

1 OD 

#(o) = -!- dt exp ( - iwt)#(t) = - (&(iw) + $( - iw)). 277 2n 

Using Eq. (2.2) this can be written in the form 

xi(&) +it( - i w )  
* ( w )  = - 2n 7 w2 + iw{&(iw) - B( - iw)}  + &(iw)it( - iw) 

and hence i t  is quickly shown that 

MClT 

(W - M,)' + MCz 
= #(w)  = 4% w )  

S(q) 

where 

and 

M ,  = J m  dt ~ ( t )  coswt 
0 

r m  
bl, = J dt M ( t )  sinwt. 

0 

The complete expression that has been adopted 
function is 

for the memory 

- exp { - c(q) ( t2  + T~((P)) ' /~}}  (4.2) 

where 6 and E are given in (2.5). In deriving the spectral function 
Z ( w ) ,  defined in (1.3), i t  is clear that  M ,  and M ,  in the denominator 
of Eq. (4.1) make no contribution in the limit q + 0, since both are 
proportional to qz. Only the cosine transform of the memory 
function is therefore required and for the type of exponential term 
occurring in the calculations this is given by the result 
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VISCOSITIES OF SIMPLE LIQUIDS 247 

K 1  is the Bessel function of the second kind having the following 
properties ; K,{s} -+ 5-l as 5 + 0 and K,{z} + ( n / 2 ~ ) ~ ' 2  exp ( - z) as 
2 + m. The spectral function Z ( w )  then follows readily being given 
by 

and the result is displayed in Fig. 1. Two points can be made 
immediately. The first is that since the memory function is known to 
be correct only a t  large t the spectral function will be most accurate 

w r ( o )  
Figure 1.  Frequency dependent longitudinal viscosity. 

for small values of w ,  the behaviour as w increases is as speculative 
as the form of the memory function we have adopted to describe 
the behaviour of the latter as t + O .  The second concerns the 
normalization of Z ( w ) ,  which according to (4.3) is 

and is in agreement with the exact value given by Schofield (1968).@) 
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248 T. G A S K E L L  

5. Summary 

The usefulness of the memory function approach lies in the fact 
that a time-dependent correlation function is expressed in terms of a 
memory function which may be susceptible to approximation or 
model-. It has been shown here that the Fourier components of 
the density-density correlation function which would be obtained 
from the linearized hydrodynamic equations can also be produced 
by adopting a particularly simple form for the associated memory 
function. The latter is in fact the general solution of an equation 
describing damped harmonic motion, namely 

A model for M is then employed which displays correctly both the 
short and long time behaviour through the introduction of a relaxa- 
tion time. Expressions for the viscosities follow automatically, of 
the type which appear in the visco-elastic theory, in which the shear 
viscosity is given by the product of a rigidity and a relaxation time 
and the bulk viscosity as the appropriate bulk modulus multiplied 
by the same relaxation time. An important new feature however is 
that a prescription for the relaxation time itself is also given. 
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